Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.201
Filtrar
1.
Arch Microbiol ; 206(5): 224, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642319

RESUMO

BACKGROUND: Vibrio cholerae can endure harsh environmental conditions by transitioning into viable but non-culturable (VBNC) form and resuscitate upon return of appropriate conditions. METHOD: In this study, we assessed the impact of physicochemical and microbiological factors, on the development of low temperature-induced VBNC state and subsequent recovery by temperature upshift. RESULTS: In estuarine water, Vibrio cholerae exhibits a slower decline in culturability over a period of 77 days as compared to 10 days in fresh water. When variable cell numbers from different growth phases were used for VBNC induction, it was observed that the higher inoculum size (106-107 cfu ml-1) from the late log phase culture appears to be crucial for entering the VBNC state. Conversely, starved cells could enter the VBNC state with an initial inoculum of 104-105 cfu ml-1, followed by resuscitation as well. The addition of glucose, GlcNAc and mannitol differentially affects progression into VBNC, while the addition of tryptone, yeast extract and casamino acid facilitated early entry into the VBNC state and shortened the length of the recovery period. CONCLUSION: Altogether these findings demonstrated that the ionic strength of water, inoculum size and the availability of nutrients played distinct roles during VBNC induction and resuscitation.


Assuntos
Vibrio cholerae , Temperatura , Temperatura Baixa , Aminoácidos , Água , Viabilidade Microbiana
2.
Food Microbiol ; 121: 104515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637077

RESUMO

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Viabilidade Microbiana , Salmonella/fisiologia , Água/análise , Temperatura Alta
3.
Compr Rev Food Sci Food Saf ; 23(3): e13345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38638070

RESUMO

Supercritical carbon dioxide (SC-CO2) has emerged as a nonthermal technology to guarantee food safety. This review addresses the potential of SC-CO2 technology in food preservation, discussing the microbial inactivation mechanisms and the impact on food products' quality parameters and bioactive compounds. Furthermore, the main advantages and gaps are denoted. SC-CO2 technology application causes adequate microbial reductions (>5 log cfu/mL) of spoilage and pathogenic microorganisms, enzyme inactivation, and improvements in the storage stability in fruit and vegetable products (mainly fruit juices), meat products, and dairy derivatives. SC-CO2-treated products maintain the physicochemical, technological, and sensory properties, bioactive compound concentrations, and biological activity (antioxidant and angiotensin-converting enzyme-inhibitory activities) similar to the untreated products. The optimization of processing parameters (temperature, pressure, CO2 volume, and processing times) is mandatory for achieving the desired results. Further studies should consider the expansion to different food matrices, shelf-life evaluation, bioaccessibility of bioactive compounds, and in vitro and in vivo studies to prove the benefits of using SC-CO2 technology. Moreover, the impact on sensory characteristics and, mainly, the consumer perception of SC-CO2-treated foods need to be elucidated. We highlight the opportunity for studies in postbiotic production. In conclusion, SC-CO2 technology may be used for microbial inactivation to ensure food safety without losing the quality parameters.


Assuntos
Dióxido de Carbono , Compreensão , Viabilidade Microbiana , Dióxido de Carbono/química , Dióxido de Carbono/farmacologia , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos
4.
Int J Biol Macromol ; 264(Pt 1): 130543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432271

RESUMO

Hydrogel microbeads can be used to enhance the stability of probiotics during gastrointestinal delivery and storage. In this study, the pectin-alginate hydrogel was enhanced by adding montmorillonite filler to produce microbeads for encapsulating Lactobacillus kefiranofaciens (LK). Results showed that the viscosity of biopolymer solutions with 1 % (PAMT1) and 3 % (PAMT3) montmorillonite addition was suitable for producing regular-shaped microbeads. A layered cross-linked network was formed on the surface of PAMT3 microbeads through electrostatic interaction between pectin-alginate and montmorillonite filler, and the surrounding LK with adsorbed montmorillonite was encapsulated inside the microbeads. PAMT3 microbeads reduced the loss of viability of LK when passing through the gastric acid environment, and facilitated the slow release of LK in the intestine and colonic colonization. The maximum decrease in viability among all filler groups was 1.21 log CFU/g after two weeks of storage, while PAMT3 freeze-drying microbeads only decreased by 0.46 log CFU/g, indicating that the gel layer synergized with the adsorbed layer to provide dual protection for probiotics. Therefore, filler-reinforced microbeads are a promising bulk encapsulation carrier with great potential for the protection and delivery of probiotics and can be developed as food additives for dairy products.


Assuntos
Alginatos , Lactobacillus , Probióticos , Pectinas , Bentonita , Microesferas , Hidrogéis , Viabilidade Microbiana
5.
Int J Food Microbiol ; 413: 110602, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301539

RESUMO

Pressure spray combined with high-voltage electrospray (PS-ES) has garnered considerable interest as a novel, non-thermal approach for microbial inactivation and preservation of liquid food. This study compared PS-ES with heat treatment (HT) to understand its inactivation mechanism against E. coli and S. aureus in a simulated system. Microbial activity, cell permeability, membrane integrity, membrane potential, and cell membrane structure were assessed. Furthermore, the impact of PS-ES treatment on microbial activity and flavor in honey raspberry juice, was examined. The changes in microbial growth and color during storage were also discussed. The experimental findings revealed that PS-ES treatment effectively reduced the number of E. coli and S. aureus by 1.99 and 1.83 log colony-forming units (CFU/mL). Additionally, it disrupted the integrity of bacterial cell membranes increasing their permeability, which led to the release of cellular proteins and nucleic acids. PS-ES treatment lowered the membrane potential and altered the structure of bacterial proteins. Application of PS-ES in honey raspberry juice reduced bacterial counts from 4.48 log CFU/mL to 1.99 log CFU/mL, with less flavor deterioration compared to HT treatment. After 30 days of storage at 4 °C and room temperature, PS-ES effectively controlled the growth of microorganisms in raspberry juice and maintained the color of the juice.


Assuntos
Mel , Rubus , Viabilidade Microbiana , Escherichia coli , Contagem de Colônia Microbiana , Staphylococcus aureus , Conservação de Alimentos
6.
Int J Biol Macromol ; 262(Pt 2): 130143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367775

RESUMO

A novel carrier comprised of ethanol- and alkali-modified cellulosic pomelo pith matrix coated with alginate was developed to improve viability while enabling gastrointestinal release of probiotics. Scanning electron microscopy imaging revealed the agricultural byproduct had a honeycomb-structured cellulose framework, enabling high loading capacity of the probiotic Lactobacillus plantarum up to 9 log CFU/g. Ethanol treatment opened up pores with an average diameter of 97 µm, while alkali treatment increased swelling and porosity, with an average pore size of 51 µm. The survival rate through the stomach was increased from 89.76 % to 91.08 % and 91.24 % after ethanol and alkali modification, respectively. The control group displayed minimal release in the first 4 h followed by a burst release. Both ethanol modification and alkali modification resulted in constant linear release over time. The release time was prolonged when decreasing the width of the pomelo peel rolls from 10 mm to 5 mm while keeping the volume of the peel constant. After 8 weeks of refrigerated storage, the cellulose-encapsulated probiotics retained viability above 7 log CFU/g. This study demonstrates the potential of the structurally intact, sustainably-sourced cellulosic pomelo pith for probiotic encapsulation and controlled delivery.


Assuntos
Alginatos , Probióticos , Celulose , Preparações de Ação Retardada , Álcalis , Etanol , Viabilidade Microbiana
7.
Anal Chem ; 96(3): 1093-1101, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38204177

RESUMO

Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.


Assuntos
Fórmulas Infantis , Lactobacillus , Propídio/análogos & derivados , Humanos , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente , Azidas , Bactérias , Viabilidade Microbiana
8.
Nature ; 625(7995): 572-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172635

RESUMO

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
9.
Int J Biol Macromol ; 259(Pt 2): 129287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211924

RESUMO

Probiotics have recently received significant attention due to their various benefits, such as the modulation of gut flora, reduction of blood sugar and insulin resistance, prevention and treatment of digestive disorders, and strengthening of the immune system. One of the major issues concerning probiotics is the maintenance of their viability in the presence of digestive conditions and extended shelf life during storage. To address this concern, numerous techniques have been explored to achieve success. Among these methods, the microencapsulation of probiotics has been proposed as the most effective way to overcome this challenge. The combination of nanomaterials with biopolymer coating is considered a novel approach to improve its viability and effective delivery. The use of polysaccharides and proteins-based bionanocomposites for microencapsulation of probiotics has emerged as an efficient and promising approach for maintaining cell viability and targeted delivery. This review article aims to investigate the use of different bionanocomposites in microencapsulation of probiotics and their effect on cell survival in long-term storage and harsh conditions in the gastrointestinal tract.


Assuntos
Probióticos , Viabilidade Microbiana , Polissacarídeos/farmacologia , Trato Gastrointestinal
10.
Int J Pharm ; 652: 123804, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38220120

RESUMO

Microencapsulation of probiotics is a main technique employed to improve cell survival in gastrointestinal tract (GIT). The present study investigated the impact of utilizing proteins i.e. Whey Protein Isolates (WPI), Pea Protein Isolates (PPI) or (WPI + PPI) complex based microbeads as encapsulating agents on the encapsulation efficiency (EE), diameter, morphology along with the survival and viability of Bifidobacterium infantis ATCC 15697. Results revealed that WPI + PPI combination had the highest EE% of the probiotics up to 94.09 % and the smoothest surface with less visible holes. WPI based beads revealed lower EE% and smaller size than PPI based ones. In addition, WPI based beads showed rough surface with visible signs of cracks, while PPI beads showed dense surfaces with pores and depressions. In contrast, the combination of the two proteins resulted in compact and smooth beads with less visible pores/wrinkles. The survival in gastrointestinal tract (GIT) was observed through TNO in-vitro gastrointestinal model (TIM-1) and results illustrated that all microbeads shrank in gastric phase while swelled in intestinal phase. In addition, in-vitro survival rate of free cells was very low in gastric phase (18.2 %) and intestinal phase (27.5 %). The free cells lost their viability after 28 days of storage (2.66 CFU/mL) with a maximum log reduction of 6.76, while all the encapsulated probiotic showed more than 106-7 log CFU/g viable cell. It was concluded that encapsulation improved the viability of probiotics in GIT and utilization of WPI + PPI in combination provided better protection to probiotics.


Assuntos
Bifidobacterium longum subspecies infantis , Probióticos , Microesferas , Trato Gastrointestinal , Polissacarídeos , Proteínas do Soro do Leite , Viabilidade Microbiana
11.
Compr Rev Food Sci Food Saf ; 23(1): e13282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284573

RESUMO

High-pressure homogenization (HPH) and ultrahigh-pressure homogenization (UHPH) are emerging food processing techniques for stabilizing emulsions and food components under the pressure range from 60 to 400 MPa. Apart from this, they also support increasing nutritional profile, food preservation, and functionality enhancement. Even though the food undergoes the shortest processing operation, the treatment leads to modification of physical, chemical, and techno-functional properties, in addition to the formation of micro-sized particles. This study focuses on recent advances in using HPH/UHPH on plant-based milk sources such as soybeans, almonds, hazelnuts, and peanuts. Overall, this systematic review provides an in-depth analysis of the principles of HPH/UHPH, the mechanism of action, and their applications in other nondairy areas such as fruits and vegetables, meat, fish, and marine species. This work also deciphers the role of HPH/UHPH in modifying food components, their functional quality enhancement, and their provision of oxidative resistance to many foods. HPH is not only perceived as a technique for size reduction and homogenization; however, it does various functions like microbial inactivation, improvement of rheologies like texture and consistency, decreasing of lipid oxidation, and making positive modifications to proteins such as changes to the secondary structure and tertiary structure thereby enhancing the emulsifying properties, hydrophobicity of proteins, and other associated functional properties in many nondairy sources at pressures of 100-300 MPa. Thus, HPH is an emerging technique with a high throughput and commercialization value in food industries.


Assuntos
Manipulação de Alimentos , Conservação de Alimentos , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Viabilidade Microbiana , Pressão
12.
Int J Biol Macromol ; 260(Pt 2): 129615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246437

RESUMO

To preserve the viability of probiotics during digestion and storage, encapsulation techniques are necessary to withstand the challenges posed by adverse environments. A core-shell structure has been developed to provide protection for probiotics. By utilizing sodium alginate (SA) / Lycium barbarum polysaccharide (LBP) as the core material and chitosan (CS) as the shell, the probiotic load reached 9.676 log CFU/mL. This formulation not only facilitated continuous release in the gastrointestinal tract but also enhanced thermal stability and storage stability. The results obtained from Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the addition of LBP and CS affected the microstructure of the gel by enhancing the hydrogen bond force, so as to achieve controlled release. Following the digestion of the gel within the gastrointestinal tract, the released amount was determined to be 9.657 log CFU/mL. The moisture content and storage stability tests confirmed that the encapsulated Lactiplantibacillus plantarum maintained good activity for an extended period at 4 °C, with an encapsulated count of 8.469 log CFU/mL on the 28th day. In conclusion, the newly developed core-shell gel in this study exhibits excellent probiotic protection and delivery capabilities.


Assuntos
Quitosana , Medicamentos de Ervas Chinesas , Probióticos , Alginatos/química , Quitosana/química , Viabilidade Microbiana , Géis , Probióticos/química
13.
Int J Biol Macromol ; 260(Pt 2): 129614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246468

RESUMO

The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.


Assuntos
Cicer , Probióticos , Anidridos Succínicos , Composição de Medicamentos/métodos , Cápsulas/química , Probióticos/química , Digestão , Viabilidade Microbiana
14.
Sci Rep ; 14(1): 631, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182678

RESUMO

Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles. A comprehensive meta-analysis was conducted, encompassing 10 papers published from 2017 to 2022, focusing on the encapsulation of probiotics within nanoparticles and their viability in various gastrointestinal conditions. The selection of these papers was based on their direct relevance to the research topic. Random-effect models were used to aggregate study-specific risk estimates. In the majority of studies, it was observed that nano-encapsulated nanoparticles showed improved viability over time compared to their free state counterparts. At various time intervals, the odds ratios (OR) with 95% confidence intervals (CI) were estimated using fixed and random effect models. At 0 min, the OR (95%CI) was 2.79 (2.79; 2.80) and 2.38 (2.14; 2.64) for. At 30 and 60 min observation was at similar rate of 2.23 (2.23; 2.24) and 2.05 (1.73; 2.43). However, at 90 min it was 1.39 (1.39; 1.39) and 1.66 (1.29; 2.14) and at 120 min 2.41 (2.41; 2.42) and 2.03 (1.63; 2.52). Overall evaluation of encapsulation revealed an improvement in probiotic bacterial viability in simulated the gastrointestinal environments.


Assuntos
Nanopartículas , Probióticos , Alimento Funcional , Viabilidade Microbiana , Razão de Chances
15.
Int J Food Microbiol ; 410: 110483, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37995495

RESUMO

Ohmic heating (OH), an innovative heating technology, presents potential applications in the pasteurization of liquid foods. Therefore, the study was conducted to evaluate the effect of OH at various voltage gradients (10 V/cm, 12.5 V/cm, and 15 V/cm) and water bath (WB) on microbial inactivation, physicochemical and sensory properties and microbial flora of pasteurized milk. Results indicated that OH with higher voltage could effectively inactivate microorganisms in milk, requiring less heating time and energy. Moreover, OH treatment at higher voltages could decelerate lipid oxidation and better maintain the sensory quality and essential amino acids content of milk. Additionally, all treatments significantly altered the microbial community, and during storage, the microbial community in milk treated with 10 V/cm and 12.5 V/cm OH remained relatively stable. OH treatments with voltage gradients exceeding 12.5 V/cm could effectively inactive microorganisms and maintain the quality attributes of milk.


Assuntos
Calefação , Leite , Animais , Leite/química , Temperatura Alta , Pasteurização/métodos , Viabilidade Microbiana
16.
J Hosp Infect ; 144: 94-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029859

RESUMO

BACKGROUND: Bacteria are known to live inside architectural structures called biofilms. Though standard biofilms have been studied extensively for more than 50 years, little is known about dry-surface biofilms (DSBs). Since 2012, DSBs have been described in several scientific papers, but basic knowledge about the viability and culturability of bacteria remains limited. AIM: To conduct a systematic review to determine whether bacteria inside DSBs are viable, culturable, and enumerable. METHODS: Eligible articles had to deal with DSBs containing at least one bacterial species involved in healthcare-associated infections, which developed in actual healthcare environments (in-situ) or with the help of any biofilm model (in-vitro). FINDINGS: Twenty-four articles were included in the review. Whereas most of them isolated viable bacteria (87% in situ; 100% in vitro), no in-situ study quantified culturable bacteria in the biofilm per unit area. Conversely, 100% of in-vitro studies cultured the bacteria from controls and 94.4% supplied an enumeration of them. Culturable bacteria also grew after 78% of the cleaning, disinfection, or sterilization protocols tested. Microscopic observations after staining the samples with live/dead fluorescent probes (Baclight®) showed large amounts of viable cells in culture-negative samples. CONCLUSION: Our study questions the efficacy of current methods for microbiological monitoring of surfaces, since these methods are only based on bacterial culturability. To improve both surface monitoring and cleaning and disinfection protocols, it is necessary to integrate the concept of DSBs which appears to contain a significant amount of viable but non-culturable bacteria.


Assuntos
Biofilmes , Desinfecção , Humanos , Viabilidade Microbiana , Desinfecção/métodos , Dessecação , Instalações de Saúde
17.
Cytometry A ; 105(2): 146-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786349

RESUMO

Flow cytometry is a relevant tool to meet the requirements of academic and industrial research projects aimed at estimating the features of a bacterial population (e.g., quantity, viability, activity). One of the remaining challenges is now the safe assessment of bacterial viability while minimizing the risks inherent to existing protocols. In our core facility at the Paris-Saclay University, we have addressed this issue with two objectives: measuring bacterial viability in biological samples and preventing bacterial contamination and chemical exposure of the staff and cytometers used on the platform. Here, we report the development of a protocol achieving these two objectives, including a viability labeling step before bacteria fixation, which removes the risk of biological exposure, and the decrease of the use of reagents such as propidium iodide (PI), which are dangerous for health (CMR: carcinogenic, mutagenic, and reprotoxic). For this purpose, we looked for a non-CMR viability dye that can irreversibly label dead bacteria before fixation procedures and maintain intense fluorescence after further staining. We decided to test on the bacteria, eFluor Fixable Viability dyes, which are usually used on eukaryotic cells. Since the bacteria had size and granularity characteristics very similar to those associated with flow cytometry background signals, a step of bacterial DNA labeling with SYTO or DRAQ5 was necessarily added to differentiate them from the background. Three marker combinations (viability-DNA) were tested on LSR Fortessa and validated on pure bacterial populations (Gram+ , Gram- ) and polybacterial cultures. Any of the three methods can be used and adapted to the needs of each project and allow users to adapt the combination according to the configuration of their cytometer. Having been tested on six bacterial populations, validated on two cytometers, and repeated at least two times in each evaluated condition, we consider this method reliable in the context of these conditions. The reliability of the results obtained in flow cytometry was successfully validated by applying this protocol to confocal microscopy, permeabilization, and also to follow cultures over time. This flow cytometry protocol for measuring bacterial viability under safer conditions also opens the prospect of its use for further bacterial characterization.


Assuntos
Bactérias , Corantes Fluorescentes , Humanos , Viabilidade Microbiana , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes , Propídio/química , Coloração e Rotulagem
18.
Int J Biol Macromol ; 258(Pt 1): 128826, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123040

RESUMO

Probiotics are of increasing interest for their potential health benefits, but their survival and adhesion in the harsh gastrointestinal environment remain a concern. This study explored a single-cell encapsulation technique to enhance probiotic survival and adhesion in the gastrointestinal tract. We encapsulated probiotics in curcumin-loaded liposomes, further coated them with polymers using layer-by-layer techniques. The coated probiotics were evaluated for survival in simulated gastrointestinal conditions, adhesion to colonic mucus, and scavenging of reactive oxygen species (ROS). The results showed that multi-layer encapsulation increased probiotic size at the nanoscale, enhancing their survival in simulated gastrointestinal conditions. Upon reaching the colon, the shedding of the coating coincided with probiotic proliferation. Additionally, the coated probiotics exhibited increased adhesion to colonic mucus. Moreover, the coating acted as a protective barrier for effectively scavenging reactive oxygen radicals, ensuring probiotic survival in inflammatory environments. This study combines the synergistic effects of probiotics and curcumin, underscoring the promise of single-cell encapsulation techniques in improving the efficacy of probiotics for addressing colitis-related diseases.


Assuntos
Quitosana , Curcumina , Probióticos , Lipossomos , Antioxidantes , Viabilidade Microbiana
19.
Microsc Res Tech ; 87(5): 888-895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38129976

RESUMO

Antimicrobial photodynamic therapy (a-PDT) is a modality that aims to induce microorganisms through visible light, a photosensitizer, and molecular oxygen. This therapy has shown promising results in controlling cariogenic biofilm in vitro and in vivo counterparts. This study investigated bacterial viability and morphological characterization of Streptococcus mutans mature biofilms after combination of erythrosine and a high potency dental curing light. Biofilms were formed on saliva-coated hydroxyapatite disks in batch culture. The samples were performed in triplicates. Fresh medium was replaced daily for five days and treated using 40 µM of E activated by HL 288 J/cm2 and total dose of 226 J at 1200 mW/cm2. Phosphate buffer saline and 0.12% of chlorhexidine were used as negative and positive control, respectively. After treatment, biofilms were assessed for microbial viability and morphological characterization by means of bio-volume and thickness. COMSTAT software was used for image analysis. Data were analyzed using two-way ANOVA followed by Tukey test with significance level 5%. The application of a-PDT and CHX treatments decreased S. mutans bacterial viability. The image analysis showed more red cells on biofilms when compared to other groups, demonstrating photobacterial killing. Erythrosine irradiated with a high potency curing light can potentially act as an antimicrobial tool in the treatment of cariogenic biofilms. The morphology and viability of microorganisms were impacted after treatment. Treatment with photodynamic therapy may be able to reduce the bio-volume and viability of bacteria present in biofilms. CLINICAL RELEVANCE AND RESEARCH HIGHLIGHTS: The use of the a-PDT technique has been applied in dentistry with satisfactory results. Some applications of this technique are in stomatology and endodontics. In the present study, we sought to understand the use of photodynamic therapy in the control of biofilm and the results found are compatible with the objective of microbiological control proposed by this technique, thus raising the alert for future studies in vivo using the combination of a-PDT with erythrosine, since they are easily accessible materials for the dental surgeon and can be applied in clinical practice.


Assuntos
Anti-Infecciosos , Streptococcus mutans , Eritrosina/farmacologia , Viabilidade Microbiana , Biofilmes , Microscopia Confocal
20.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138559

RESUMO

Lactobacillus plantarum is a kind of probiotic that benefits the host by regulating the gut microbiota, but it is easily damaged when passing through the gastrointestinal tract, hindering its ability to reach the destination and reducing its utilization value. Encapsulation is a promising strategy for solving this problem. In this study, transglutaminase (TGase)-crosslinked gelatin (GE)/sodium hexametaphosphate (SHMP) hydrogels were used to encapsulate L. plantarum. The effects of TGase concentration and drying method on the physiochemical properties of the hydrogels were determined. The results showed that at a TGase concentration of 9 U/gGE, the hardness, chewiness, energy storage modulus, and apparent viscosity of the hydrogel encapsulation system were maximized. This concentration produced more high-energy isopeptide bonds, strengthening the interactions between molecules, forming a more stable three-dimensional network structure. The survival rate under the simulated gastrointestinal conditions and storage stability of L. plantarum were improved at this concentration. The thermal stability of the encapsulation system dried via microwave vacuum freeze drying (MFD) was slightly higher than that when dried via freeze drying (FD). The gel structure was more stable, and the activity of L. plantarum decreased more slowly during the storage period when dried using MFD. This research provides a theoretical basis for the development of encapsulation technology of probiotics.


Assuntos
Lactobacillus plantarum , Probióticos , Gelatina/farmacologia , Viabilidade Microbiana , Transglutaminases/farmacologia , Hidrogéis/farmacologia , Liofilização , Probióticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...